Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 77(4): 1061-1071, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35084027

RESUMO

BACKGROUND: Previously, we evaluated the intracellular mycobactericidal activity of the minor groove binder, S-MGB-364 against the clinical Mycobacterium tuberculosis (Mtb) strain HN878 in macrophages. OBJECTIVES: To assess the mycobactericidal activity of S-MGB-364 in Mtb-infected mice. Further, we investigated a plausible DNA binding mechanism of action of S-MGB-364. METHODS: The anti-TB and host immune effects of intranasal S-MGB-364 or S-MGB-364 encapsulated in non-ionic surfactant vesicles (NIV) were assessed in Mtb-infected mice by cfu enumeration, ELISA, histology, and flow cytometry. DNA binding was examined using native mass spectrometry and UV-vis thermal melt determination. S-MGB interference with DNA-centric biological events was assessed using a representative panel of Mtb and human topoisomerase I, and gyrase assays. RESULTS: S-MGB-364 bound strongly to DNA as a dimer, significantly increasing the stability of the DNA:S-MGB complex compared with DNA alone. Moreover, S-MGB-364 inhibited the relaxation of Mtb topoisomerase I but not the human form. In macrophages, S-MGB-364 or S-MGB-364-NIV did not cause DNA damage as shown by the low γ-H2AX expression. Importantly, in the lungs, the intranasal administration of S-MGB-364 or S-MGB-364-NIV formulation in Mtb-infected mice was non-toxic and resulted in a ∼1 log cfu reduction in mycobacterial burden, reduced the expression of proinflammatory cytokines/chemokines, altered immune cell recruitment, and importantly reduced recruitment of neutrophils. CONCLUSIONS: Together, these data provide proof of concept for S-MGBs as novel anti-TB therapeutics in vivo.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Imunidade , Macrófagos/microbiologia , Camundongos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
2.
Medchemcomm ; 10(9): 1620-1634, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32952999

RESUMO

Traditional cytotoxic agents which act through a DNA-alkylating mechanism are relatively non-specific, resulting in a small therapeutic window and thus limiting their effectiveness. In this study, we evaluate a panel of 24 non-alkylating Strathclyde Minor Groove Binders (S-MGBs), including 14 novel compounds, for in vitro anti-cancer activity against a human colon carcinoma cell line, a cisplatin-sensitive ovarian cancer cell line and a cisplatin-resistant ovarian cancer cell line. A human non-cancerous retinal epithelial cell line was used to measure selectivity of any response. We have identified several S-MGBs with activities comparable to cis-platin and carboplatin, but with better in vitro selectivity indices, particularly S-MGB-4, S-MGB-74 and S-MGB-317. Moreover, a comparison of the cis-platin resistant and cis-platin sensitive ovarian cancer cell lines reveals that our S-MGBs do not show cross resistance with cisplatin or carboplatin and that they likely have a different mechanism of action. Finally, we present an initial investigation into the mechanism of action of one compound from this class, S-MGB-4, demonstrating that neither DNA double strand breaks nor the DNA damage stress sensor protein p53 are induced. This indicates that our S-MGBs are unlikely to act through an alkylating or DNA damage response mechanism.

3.
Eur J Med Chem ; 136: 561-572, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28544982

RESUMO

This study details the synthesis and biological evaluation of a collection of 19 structurally related Minor Groove Binders (MGBs), derived from the natural product distamycin, which were designed to probe antifungal and antimycobacterial activity. From this initial set, we report several MGBs that are worth more detailed investigation and optimisation. MGB-4, MGB-317 and MGB-325 have promising MIC80s of 2, 4 and 0.25 µg/mL, respectively, against the fungus C. neoformans.MGB-353 and MGB-354 have MIC99s of 3.1 µM against the mycobacterium M. tuberculosis. The selectivity and activity of these compounds is related to their physicochemical properties and the cell wall/membrane characteristics of the infective agents.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Produtos Biológicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Distamicinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Distamicinas/síntese química , Distamicinas/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...